New Therapies and Current Management of Follicular Lymphoma

Stephen J. Schuster, MD

Professor of Medicine Perelman School of Medicine of the University of Pennsylvania Director, Lymphoma Program & Lymphoma Translational Research Abramson Cancer Center of the University of Pennsylvania

Please note that some of the studies reported in this presentation were presented as an abstract and/or presented at a conference. These data and conclusions should be considered to be preliminary until published in a peer-reviewed journal.

January 26, 2018

Disclosures

Adaptive:	Research support
Celgene:	Research support, consultant, advisory board, steering committee
Genentech	Research support, consultant, advisory board
Gilead	Research support, consultant, advisory board
Janssen	Research support, consultant, advisory board
Merck:	Research support, consultant, advisory board
Nordic Nanovector:	Consultant, Scientific Advisory board
Novartis:	Research support, consultant, advisory board, steering committee
Pharmacyclics:	Research support, consultant, advisory board, steering committee
Seattle Genetics:	Research support, consultant, advisory board

Follicular Lymphoma in the Real World

One- and Five-Year Relative Survival (%), All Ages, 2004-2011

Haematological Malignancy Research Network (HMRN)

http://info.cancerresearchuk.org/cancerstats/faqs/#How

Follicular Lymphoma: Unmet Need

5 year survival lower in the *early-POD group* than reference group: 50% vs 90%

"Double Refractory" Follicular Lymphoma: Approaches to Therapy

- **B Cell Receptor Signal Inhibition**
- CD19-directed CAR T Cells

B Cell Receptor Signal Transduction and Inhibition

B-cell activation and proliferation

PI3-Kinase Inhibitors

Idelalisib Approved 2014

Copanlisib Approved 2017

ORIGINAL ARTICLE

PI3Kδ Inhibition by Idelalisib in Patients with Relapsed Indolent Lymphoma

Ajay K. Gopal, M.D., Brad S. Kahl, M.D., Sven de Vos, M.D., Ph.D., Nina D. Wagner-Johnston, M.D., Stephen J. Schuster, M.D., Wojciech J. Jurczak, M.D., Ph.D., Ian W. Flinn, M.D., Ph.D., Christopher R. Flowers, M.D., Peter Martin, M.D., Andreas Viardot, M.D., Kristie A. Blum, M.D., Andre H. Goy, M.D., Andrew J. Davies, M.R.C.P., Ph.D., Pier Luigi Zinzani, M.D., Ph.D., Martin Dreyling, M.D., Dave Johnson, B.S., Langdon L. Miller, M.D., Leanne Holes, M.B.A., Daniel Li, Ph.D., Roger D. Dansey, M.D., Wayne R. Godfrey, M.D., and Gilles A. Salles, M.D., Ph.D.

NEJM 370 (11), 2014

Idelalisib in Relapsed, Rituximab- & Alkylating-Refractory Indolent Lymphoma

Baseline Characteristics of the Patients, Prior Therapy, and Treatment Disposition
(Patients, n=125)

Subtype of indolent non-Hodgkin's lymphoma no. (%)	
Follicular lymphoma	72 (58)
Small lymphocytic lymphoma	28 (22)
Marginal zone lymphoma	15 (12)
Lymphoplasmacytic lymphoma with or without Waldenström's macroglobulinemia	10 (8)
Number of prior regimens	
Median	4
Range	2-12
Prior therapy no. (%)	
Prior therapy no. (%) Rituximab	125 (100)
Prior therapy no. (%) Rituximab Alkylating agent	125 (100) 125 (100)
Prior therapy no. (%) Rituximab Alkylating agent Combination of rituximab and alkylating agent	125 (100) 125 (100) 114 (91)
Prior therapy no. (%) Rituximab Alkylating agent Combination of rituximab and alkylating agent Bendamustine	125 (100) 125 (100) 114 (91) 81 (65)
Prior therapy no. (%) Rituximab Alkylating agent Combination of rituximab and alkylating agent Bendamustine Anthracycline	125 (100) 125 (100) 114 (91) 81 (65) 79 (63)
Prior therapy no. (%) Rituximab Alkylating agent Combination of rituximab and alkylating agent Bendamustine Anthracycline Purine analogue	125 (100) 125 (100) 114 (91) 81 (65) 79 (63) 42 (34)

Adapted from Gopal et al. NEJM 370 (11), 2014

Idelalisib in Relapsed, Rituximab- & Alkylating-Refractory Follicular Lymphoma: PFS

Idelalisib in Relapsed, Rituximab- & Alkylating-Refractory Indolent Lymphoma

Adverse Events during Treatment									
Event or abnormality	Grade – No. (%)		Event or abnormality	Grade – No. (%)					
	Any	> 3		Any	> 3				
Adverse event	103 (82)	68 (54)	Hematopoietic laboratory abnormality						
Diarrhea	54 (43)	16 (13)	Decreased neutrophils	70 (56)	34 (27)				
Nausea	37 (30)	2 (2)	Decreased hemoglobin	35 (28)	2 (2)				
Fatigue	37 (30)	2 (2)	Decreased platelets	32 (26)	8 (6)				
Cough	36 (29)	0	Chemical laboratory abnormality						
Pyrexia	35 (28)	2 (2)	Increased ALT	59 (47)	16 (13)				
Decreased appetite	22 (18)	1 (1)	Increased AST	44 (35)	10 (8)				
Dyspnea	22 (18)	4 (3)	Increased alkaline phosphatase	28 (22)	0				
Abdominal pain	20 (16)	3 (2)	Increased bilirubin	13 (10)	0				
Vomiting	19 (15)	3 (2)							
Upper respiratory tract infection	18 (14)	0							
Weight decreased	17 (14)	0							
Rash	16 (13)	2 (2)							
Asthenia	14 (11)	3 (2)							
Night Sweats	14 (11)	0							
Pneumonia	14 (11)	9 (7)							
Peripheral edema	13 (10)	3 (2)							
Headache	13 (10)	1 (1)							

Adapted from Gopal et al. NEJM 370 (11), 2014

VOLUME 35 · NUMBER 35 · DECEMBER 10, 2017

JOURNAL OF CLINICAL ONCOLOGY

RAPID COMMUNICATION

Phosphatidylinositol 3-Kinase Inhibition by Copanlisib in Relapsed or Refractory Indolent Lymphoma

Martin Dreyling, Armando Santoro, Luigina Mollica, Sirpa Lepp^a, George A. Follows, Georg Lenz, Won Seog Kim, Arnon Nagler, Panayiotis Panayiotidis, Judit Demeter, Muhit Ozcan, Marina Kosinova, Krimo Bouabdallah, Franck Morschhauser, Don A. Stevens, David Trevarthen, Marius Giurescu, Lisa Cupit, Li Liu, Karl Kochert, Henrik Seidel, Carol Peña, Shuxin Yin, Florian Hiemeyer, Jose Garcia-Vargas, Barrett H. Childs, and Pier Luigi Zinzani

Patient Characteristics (n = 142)									
Characteristics	Total, No. (%)								
Histology of tumor									
Follicular lymphoma	104 (73)								
Grade 1	22 (21)								
Grade 2	52 (50)								
Grade 3a	27 (26)								
Marginal zone lymphoma	23 (16)								
Small lymphocytic lymphoma	8 (6)								
Lymphoplasmacytic lymphoma/Waldenström's macroglobulinemia	6 (4)								
Diffuse large B cell lymphoma	1 (1)								
Prior therapy	142 (100)								
Rituximab	142 (100)								
Alkylating agents	142 (100)								
Refractory to last regimen	86 (61)								
Rituximab	80 (56)								
Alkylating agents	60 (42)								
Rituximab and alkylating agents	61 (43)								

Best Response	Follicular Lymphoma (n = 104)
Complete response	15 (14)
Partial response	46 (44)
Stable disease	35 (34)
Progressive disease	2 (2)
Not evaluable	0
Not available	6 (6)
Objective response rate (95% CI)	61 (59) 49 to 68
Disease control rate (95% CI)	91 (88) 80 to 93

Adverse Events										
		Grad	e			Grade				
	All	3	4	5		all	3	4	5	
Any treatment-emergent adverse event	140 (99)	75 (53)	38 (27)	6 (4)	Hematologic toxicities					
Non-hematologic toxicities	Non-hematologic toxicities				Decreased neutrophil count	42 (30)	11 (8)	23 (16)	0	
Hyperglycemia	71 (50)	48 (34)	10 (7)	0	Decreased platelet count	29 (20)	9 (6)	1 (1)	0	
Diarrhea	48 (34)	7 (5)	0	0	Anemia	22 (15)	6 (4)	0	0	
Fatigue	43 (30)	3 (2)	0	0	Adverse events of special interest					
Hypertension	43 (40)	34 (24)	0	0	Pneumonitis (non-infectious) 11 (8) 2 (1)			0	0	
Fever	36 (25)	6 (4)	0	0	Colitis	1 (1)	0	1 (1)	0	
Nausea	33 (23)	1 (1)	0	0	Laboratory toxicities					
Lung infection	30 (21)	18 (13)	3 (2)	2 (1)	Elevated AST	39 (28)	1 (1)	1 (1)	0	
Oral mucositis	28 (20)	4 (3)	0	0	Elevated ALT	32 (23)	1 (1)	1 (1)	0	
Upper respiratory infection	26 (18)	4 (3)	0	0						
Cough	23 (16)	0	0	0						
Maculopapular rash	18 (13)	1 (1)	0	0						
Constipation	17 (12)	0	0	0						
Bronchial infection	16 (11)	2 (1)	0	0						
Flu-like symptoms	16 (11)	1 (1)	0	0						
Anorexia	15 (11)	0	0	0						
Skin infection	15 (11)	1 (1)	0	0						

Adapted from Dreyling et al. J Clin Oncol 35:3898-3905, 2017

CD19-directed CAR T Cells in Lymphomas: relapsed/refractory Follicular Lymphoma (FL)

Generic Chimeric Antigen Receptor (CAR)

Extracellular domain - scFv: monoclonal antibody derivative - determines receptor specificity Intracellular domain - fusion protein comprised of a T-cell costimulatory receptor signaling domain + a TCRζ activation domain

Transmembrane domain

 has an extracellular spacer / hinge region

Redirecting T Cell Specificity

- Gene transfer technology stably expresses CARs on T cells^{1,2}
- CAR T cell therapy takes advantage of the cytotoxic potential of T cells, killing tumor cells in an *antigen-dependent* manner^{1,3}
- Persistent CAR T cells consist of both effector (cytotoxic) and central memory T cells³
- T cells are *non-cross resistant* to chemotherapy

- 1. Milone MC, et al. Mol Ther. 2009;17:1453-1464.
- 2. Hollyman D, et al. J Immunother. 2009;32:169-180.
- 3. Kalos M, et al. Sci Transl Med. 2011;3:95ra73.

The CAR T Cell Process

T cells transduced ex vivo with a lentivirus or retroviral vector encoding anti-CD19 scFv linked to costimulatory and CD3- ζ signaling domains

Image courtesy of Novartis Pharmaceutical Corporation. All rights reserved.

The CAR T Cell Process

CD19 Expression in Normal B Cells & Related B Cell Malignancy

CD19-directed CAR T Cells

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Chimeric Antigen Receptor T Cells in Refractory B-Cell Lymphomas

Stephen J. Schuster, M.D., Jakub Svoboda, M.D., Elise A. Chong, M.D., Sunita D. Nasta, M.D., Anthony R. Mato, M.D., Özlem Anak, M.D., Jennifer L. Brogdon, Ph.D., Iulian Pruteanu-Malinici, Ph.D.,
Vijay Bhoj, M.D., Ph.D., Daniel Landsburg, M.D., Mariusz Wasik, M.D., Bruce L. Levine, Ph.D., Simon F. Lacey, Ph.D., Jan J. Melenhorst, Ph.D., David L. Porter, M.D., and Carl H. June, M.D.

Schuster SJ, et al. N Engl J Med. 2017 Dec 28;377(26):2545-2554.

Proof of Concept: Follicular Lymphoma UPCC13413

Key eligibility criteria

 Adult histologically proven CD19+ relapsed/refractory FL with measurable disease <2 years after second or higher line of immunochemotherapy (not counting single agent monoclonal antibody therapy); measurable disease; ECOG PS 0/1

FL: Patient Characteristics (n = 15 enrolled; n = 14 infused)								
Median age	62 years (range 43 - 72)							
Sex	7 (47%) men							
Median prior therapies	5 (range 2 - 10)							
Prior R-CHOP/R-EPOCH	13 (87%)							
Prior R/O-bendamustine	11 (73%)							
Prior idelalisib	4 (27%)							
Prior transplant %	4 (27%)							
Stage III – IV (enrollment)	13 (87%)							
Increased LDH (enrollment)	10 (67%)							
> 1 extranodal site (enrollment)	4 (27%)							
Median ECOG PS (enrollment)	0 (range 0 – 1)							

Chong, et al. ASH 2016. Abstract 1100.

Proof of Concept: Follicular Lymphoma UPCC13413

- Single-center, phase 2 study at the University of Pennsylvania showed durable remissions with a single infusion of CTL019 in r/r FL
 - No patient in CR at 6 months had relapsed at median follow-up, 28.6 months*

	Month 3	Month 6
ORR	79%	78%
CR	50%	71%
PR	29%	7%

CR, complete response; ORR, overall response rate; PR, partial response

FL: Lymphodepleting therapy (n = 14)

- (n) Regimen
- 6 bendamustine (90 mg/m²) daily x 2
- 1 cyclophosphamide (200 mg/m²) + fludarabine (20 mg/m²) daily x 3
- 3 XRT (400 cGy) + cyclophosphamide (1 g/m²)
- 1 cyclophosphamide (1 g/m²)
- 1 cyclophosphamide (1.2 g/m²) over 4 days
- 1 carboplatin + gemcitabine
- 1 modified EPOCH

Response Duration (n = 11; CR + PR)

- Median response duration: not reached
- 88.9% responding at median follow-up of 28.6 months*

Chong, *et a*l. ASH 2016. Abstract 1100.
 Schuster SJ, *et al*. N Engl J Med. 2017 Dec 28;377(26):2545-2554.

Response Rates¹ (N = 14)

Follicular Lymphoma UPCC 13413

Schuster SJ, et al. N Engl J Med. 2017 Dec 28;377(26):2545-2554.

Follicular Lymphoma: 13413-19

10/15/2014

CTL019: 11/04/2014

12/03/2014

FL Results: Time to Next Therapy

FL Adverse Events of Interest at Least Possibly Related

AE	G1	G2	G3	G4	G5	Total	AE	G1	G2	G3	G4	G5	Total
Cytokine release syndrome		4	1	1		6	Allergic reaction		1				1
Hypotension		1	1	1		3	Nausea	4	2				6
Pulmonary edema			1	1		2	Vomiting	1					1
Transaminitis		1				1	Fatigue	2	1				3
Hyper-bilirubinemia		1				1	Arthralgias	2	1				3
Fever (non-CRS)	3					3	Anemia		1				1
Headache	3					3	Neutropenia			1			1
Confusion		2				2	Rash		1				1
Encephalitis					1	1	Pneumonia			1			1
Tremor	1					1	Chest pain	1					1

Conclusions: CTL019 in Follicular Lymphoma

- CTL019 can achieve durable responses in patients with relapsed or refractory CD19+ follicular lymphomas
 - All patients who achieved CR remain in CR
 - CTL019 is superior to physician's choice antecedent therapy
- Chimeric antigen receptor modified T cells directed against CD19 (CTL019) were successfully manufactured for all patients with follicular lymphoma
- The toxicity of this therapeutic approach appears acceptable
 - There were no deaths from cytokine release syndrome
- Further studies of CTL019 for treatment of follicular lymphoma are warranted

CD19-directed CAR T Cell: Folklore

- CAR T cells directed against CD19 result in profound and prolonged humoral immunodeficiency. UPCC13413 observations:
 - 16 patients in CR > 6 months: 8 had sustained polyclonal B-cell recovery
 - 12 patients in CR \geq 6 months did not receive prophylactic IVIG
 - 2 patients required IVIG for recurrent infections at 12 and 22 months
 - 10 patients (5 DLBCL; 5 FL) at median follow-up 22.5 months (range, 11-34):
 - 3/10 patients had increases in IgG levels by 18 months (2 to normal)
 - 4/10 patients reached normal IgM between 12 and 24 months
 - 3/10 patients had increases in IgA levels between 24 and 30 months (2 to normal)

CTL019 CAR T Cells + ?

T Cell Targets for Immunoregulatory Therapy

¹ Mellman et al. Nature 480, 480-489 (2011) doi:10.1038/nature10673

13413-34: FL

- 34 year old woman with FL, grade 2
- Past therapies included:
 - rituximab CVP + maintenance rituximab
 - rituximab chlorambucil prednisone
 - Zevalin
 - R-CHOP
 - cyclophosphamide etoposide
 - R-EPOCH
 - allogeneic bone marrow transplant
 - lenalidomide rituximab
 - Ibrutinib
 - carboplatin gemcitabine
- Lymphodepleting chemotherapy: 7/20/15
 - carboplatin gemcitabine
- CTL019 infusion: 7/29/15

13413-34: FL Transformed to "Double Hit" DLBCL

October 15, 2015: Day +78 CTL019

Biopsy: October 23, 2015

- Flow: kappa LC, CD10+, CD19+
- IHC: large PAX5+ B cells; PDL1+
- FISH: c-MYC and BCL-2 rearranged

- \rightarrow Nov. 2 & 3: radiation therapy (1400 cGy)
- \rightarrow Nov. 19 & Dec. 9: nivolumab

December 30, 2015

Biopsy: March 6, 2016

- Extensive necrosis
- No tumor seen

CAR T Cells and PD-1 Blockade: Studies in Progress

- Phase I/II study of pembrolizumab in patients failing to respond to or relapsing after anti-CD19 chimeric antigen receptor modified T cell therapy for relapsed or refractory CD19+ lymphomas
 - NCT02650999
- Correlative studies in progress:
 - Study modulation of tumor immunophenotype and microenvironment and their effects on CAR T cells in patients failing CTL019, as well as effects of PD-1 blockade on CAR T cells, tumor and microenvironment
 - Determine CD19 expression by tumors in patients failing CTL019

Questions & Discussion